LEADER 01000caa a2200265 4500
001 OLC1981851925
003 DE-627
005 20230714213338.0
007 tu
008 161013s2016 xx ||||| 00| ||eng c
024 7 |a 10.1007/s11270-016-2975-z  |2 doi 
028 5 2 |a PQ20161012 
035 |a (DE-627)OLC1981851925 
035 |a (DE-599)GBVOLC1981851925 
035 |a (PRQ)c1325-37474aebe9e718d7a4e955d59d5ab8dcb49ba73528176a1080ccbc5569b1f86e0 
035 |a (KEY)0054442620160000227000900001characterizationofcitricacidmodifiedclamshellsanda 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 570  |a 333.7  |q DE-600 
084 |a BIODIV  |2 fid 
084 |a ZC 7520  |q AVZ  |2 rvk 
100 1 |a Sun, Cuizhen  |e verfasserin  |4 aut 
245 1 0 |a Characterization of Citric Acid-Modified Clam Shells and Application for Aqueous Lead (II) Removal 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
520 |a Due to the presence of chitin (a type of animal polysaccharides), clam shells (CS) exhibited a promising potential as the adsorbent for lead or Pb removal especially after surface modification by citric acid. Both porosity and surface areas of the citric acid-modified clam shell (CACS) were significantly increased as compared to the untreated CS. Fourier transform infrared (FTIR) spectra indicated that carboxyl groups were increased on the surface of CACS. Zeta potential and X-ray photoelectron spectroscopy (XPS) analysis showed that electrostatic interaction and ion exchange were the main adsorption mechanism. The adsorption capacity of CACS was enhanced by 34.9–61.7 % compared to that of CS. The Pb (II) adsorption capacity was increased from 4.848 to 4.929 mg Pb·g−1 with a temperature increase from 10 to 50 °C, respectively, suggesting that the adsorption process was endothermic. The Pb (II) adsorption kinetics on CACS well fitted the pseudo-second-order model, while the adsorption isotherm for Pb (II) could be described by the Langmuir equation. The presented work shed new insight into the application of natural materials as low-cost and effective absorbents to remove aqueous heavy metals such as Pb (II). 
540 |a Nutzungsrecht: © Springer International Publishing Switzerland 2016 
650 4 |a Heavy metal 
650 4 |a Environment 
650 4 |a Environment, general 
650 4 |a Clam shell 
650 4 |a Hydrogeology 
650 4 |a Adsorption 
650 4 |a Water Quality/Water Pollution 
650 4 |a Climate Change/Climate Change Impacts 
650 4 |a Atmospheric Protection/Air Quality Control/Air Pollution 
650 4 |a Soil Science & Conservation 
650 4 |a Lead 
650 4 |a Citric acid 
650 4 |a Bioaccumulation 
650 4 |a Biodegradation 
650 4 |a Bioremediation 
650 4 |a Fourier transforms 
650 4 |a Analysis 
650 4 |a Kinetics 
650 4 |a Studies 
700 1 |a Qiu, Jinwei  |4 oth 
700 1 |a Zhang, Zhibin  |4 oth 
700 1 |a Marhaba, Taha F  |4 oth 
700 1 |a Zhang, Yanhao  |4 oth 
700 1 |a Zhang, Wen  |4 oth 
773 0 8 |i Enthalten in  |t Water, air & soil pollution  |d Dordrecht : Springer, 1971  |g 227(2016), 9, Seite 1-11  |w (DE-627)12929134X  |w (DE-600)120499-3  |w (DE-576)014472643  |x 0049-6979  |7 nnns 
773 1 8 |g volume:227  |g year:2016  |g number:9  |g pages:1-11 
856 4 1 |u http://dx.doi.org/10.1007/s11270-016-2975-z  |3 Volltext 
856 4 2 |u http://search.proquest.com/docview/1810941125 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_OLC 
912 |a FID-BIODIV 
912 |a SSG-OLC-UMW 
912 |a SSG-OLC-TEC 
912 |a SSG-OLC-FOR 
912 |a SSG-OLC-IBL 
912 |a SSG-OLC-PHA 
912 |a SSG-OLC-DE-84 
912 |a SSG-OPC-GGO 
912 |a GBV_ILN_70 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4219 
912 |a GBV_ILN_4313 
936 r v |a ZC 7520 
951 |a AR 
952 |d 227  |j 2016  |e 9  |h 1-11